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On inviscid flow in a waterfall 

By P. M. NAGHDI AND M. B. RUBIN 
Department of Mechanical Engineering, University of California, Berkeley 

(Received 26 July 1979 and in revised form 25 April 1980) 

A nonlinear steady state solution is obtained for an incompressible, inviscid fluid in 
a waterfall under the action of gravity, using a special case of the system of differential 
equations of a recent theory of fluid sheets derived by a direct approach. This analytical 
solution has a simple form and offers some advantages over previous solutions of the 
problem either by asymptotic techniques or by numerical procedures. A comparison 
with experimental results is also indicated. 

1. Introduction 
This paper is concerned with two-dimensional motion of an incompressible, inviscid 

fluid in a waterfall under the action of gravity. A nonlinear steady state solution of the 
problem is obtained using a special case of the system of differential equations of a 
Cosserat (or a directed) fluid sheet contained in two recent papers by Green & Naghdi 
(1976a, 1977). Before proceeding further, it is desirable for later reference to provide 
here the following statement of the problem. 

Statement of the problem. Consider the steady two-dimensional flow of an incompres- 
sible, inviscid fluid under the action of gravity over a bed (or a cliff) leading to a free 
overfall (see figure 1); the effect of surface tension is assumed negligible. Two distinct 
regions of flow on either side of the edge of the fluid bed may be associated with this 
problem: The upstream region (labelled as I in figure 1) is characterized by a free top 
surface and a fixed level bottom, while in the downstream region (labelled as I1 in 
figure 1)  both the top and bottom surfaces of the fluid are free. Far upstream of the 
bed’s edge the fluid is assumed to flow as a uniform stream, while downstream the 
fluid falls freely under the action of gravity. Of particular interest in analysing the 
problem is the prediction of the height of the free surface in the upstream region and 
the determination of the downstream solution, i.e. the shape of the free surfaces 
including the vertical thickness, as well as the velocity and hence the flow rate. 

It should be clear from the above statement that the rather complex nature of the 
flow in both upstream and downstream regions is due to two major factors: (1)  The 
location of the free surfaces are unknown and are determined by the solution of the 
problem and (2) the speed of a fluid particle on any of the free surfaces is not constant 
as a result of gravitational acceleration. Although the overfall problem is one of the 
simplest problems which includes a double free surface region (downstream of the 
fluid bed), even in this case an exact analytical solution of the problem has not been 
possible so far with the use of the three-dimensional equations of an incompressible, 
inviscid fluid. For this reason, previous authors have discussed the solution of the 
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FIGURE 1. A sketch of the free overfall in the z-z plane of a rectangular Cartesian co-ordinate 
system showing the upstream and downstream regions labelled as I and 11, respectively. Also 
shown are the vertical height HI and horizontal velocity u1 far upstream, the vertical thickness 
H ,  far downstream and the height H at the edge x = 0 of the fluid bed. 

problem either by numerical procedures or by asymptotic techniques. Keller & Weitz 
(1957) have developed a series in powers of the jet thickness and obtained a solution 
for the region downstream of the fluid bed only. Clarke (1965) has solved the problem 
of overfall for large Froude numbers with the use of matched asymptotic techniques 
and by utilizing an asymptotic expansion based on the reciprocal of Froude number 
in the upstream region and another expansion based on the thinness of the fall in the 
downstream region. A further discussion of the problem of overfall is included in a 
paper of Keller & Geer (1973), who consider asymptotic solutions of a class of problems 
based on the slenderness ratio of the stream. A n  early numerical solution of the prob- 
lem, employing relaxation method, was given by Southwell & Vaisey (1946); and 
further results, again by relaxation method, were obtained by Markland (1965). A 
more recent contribution to the subject is made by Chow & Han (1979), who obtain 
a numerical solution of the problem via the three-dimensional equations of an incom- 
pressible, inviscid fluid along with hodograph transformations. 

The analytical solution of the overfall problem obtained here is quite simple. It may 
be contrasted with the fairly intricate numerical work of Chow & Han (1979) or the 
asymptotic solution of Clarke (1965) which is valid only for large Froude numbers. 
A significant feature of the present solution is the proof that the upstream flow cannot 
be subcritical, which confirms a speculative remark made by Chow & Han (1979, p. 3) 
to the effect that ‘the existence of subcritical case is doubtful in steady inviscid flow’. 

In order to indicate why the theory of a directed fluid sheet employed here is 
applicable to the free overfall problem, we first make some observations concerning 
the kinematical nature of this (three-dimensional) boundary-value problem. The 
boundary conditions require that far upstream the horizontal velocity is constant and 
the vertical velocity is zero, while far downstream the horizontal velocity is inde- 
pendent of the vertical coordinate and the pressure is constant throughout the vertical 
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thickness. It then follows that both far upstream and far downstream, the horizontal 
and vertical velocities are independent of the vertical coordinate. This observation 
suggests that the variation of the velocity field throughout the vertical thickness of 
the fluid sheet is probably small in both regions I and I1 of figure 1 ; and is also consis- 
tent with the kinematical assumption associated with the particular two-dimensional 
model upon which the theory of a directed fluid sheet with a single director is con- 
structed (Green & Naghdi 1976a, 1977). Indeed, as has been remarked by Green & 
Naghdi (19763, $ 1 ,  last paragraph), this kinematical assumption is equivalent to the 
(three-dimensional) approximation that the vertical component of the velocity field 
is linear in the vertical co-ordinate z and that the horizontal component of the velocity 
field is independent of z. In addition, it should be noted that the system of differential 
equations of the theory employed accounts for the effect of vertical inertia, is transla- 
tion invariant and satisfies exactly the boundary conditions on the top and bottom 
surfaces of the fluid sheet. 

2. Basic equation 
We record here a special case of the nonlinear differential equations of the restricted 

theory of a directed fluid sheet derived by Green & Naghdi (1977) for propagation of 
gravity waves over a’ bottom of variable initial depth. These equations were derived 
by a direct approach based on a two-dimensional continuum model called a Cosserat 
(or a directed) surface. However, within the scope of the three-dimensional theory of 
inviscid fluids, Green & Naghdi (19763) have shown that this nonlinear two-dimen- 
sional theory can also be derived from an energy equation, the incompressibility 
condition, invariance requirements under superposed rigid body motions, together 
with a single approximation for the (three-dimensional) velocity field. For additional 
background material on the development of this theory, reference may be made to a 
recent review paper by Naghdi (1979). 

Initially we follow the derivation and notation of equations (2.1)-(2.5) of Naghdi & 
Rubin (1981; see pages 349-350 of this volume), from which, in the absence of surface 
tension, the condition of incompressibility and the relevant equations of motion are 
given by the following nonlinear partial differential equations (Green & Naghdi 1977): 

w + 9 U X  = 0, ( 2 . 6 ~ )  

(2.63, c,  d )  

where the subscripts denote partial differentiation with respect to x, and a = vertical 
location of the bottom fluid surface relative to a fixed system of Cartesian co-ordinate 
axes (z, y, z) .  Also, the position vectors at  the bottom and top surfaces of the fluid 
sheet may be expressed as 

(2.7a, 3) A - 
p = ze, + a ( x ,  t )  e3, p = ze, + p(z, t )  e3. 
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For steady state motions, the equations of motion (2.6) reduce to 
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( W X  = 0, ( 2 . 8 ~ )  

P*+UX = @Bx-Wx-px, p*$uhx = -p*s9+F-@, &p*&wx = - 9 ( @ + F ) + $ .  
(2.8b, c,d)  

As noted above, Green & Naghdi (1976 b )  have shown that the theory which results 
in the system of equations (2.6) can also be derived from the three-dimensional theory 
by approximating the position vector in the form 

p* = r + 834e3, (2.9) 

where O3 is a convected co-ordinate. Corresponding to the values O3 = It 4 the expres- 
sion (2.9) locates the top and bottom surfaces, respectively. With the help of (2.7), 
(2.8) and (2.9), it can then be shown that $and q5 are related to B and a by 

7k = *(B+a), 4 = P-a. (2.10a, b)  

For later reference, we also recall an expression for p in terms of the pressure p* in the 
three-dimensional theory (see (4.20) in Green & Naghdi 1976b), namely 

(2.11) 

where the limits of integration correspond to the bottom and top surfaces of the fluid 
sheet indicated above. 

As noted previously (see, e.g. Naghdi 1979), a direct theory of the type utilized in 
this paper can only provide partial information in some sense: for example, in the 
case of fluid sheets, information concerning quantities which can be regarded as 
representing the medium response confined to a surface or its neighbourhood as a 
consequence of the (three-dimensional) motion of the fluid. Moreover, it should be 
noted that the theory of a directed fluid sheet as its basic kinetical ingredients admits 
forces and couples (rather than stresses), which can be interpreted as resultants, and 
is employed here mainly for the purpose of obtaining satisfactory predictions for the 
shape of the free surfaces and such quantities as the amplitude of the motion and flow 
rate. It should not be expected to provide accurate information about stress distribu- 
tions (here the pressure) across the thickness of the fluid sheet as is also evident from 
(2.11). 

3. Formulation of the problem 
A statement of the problem under consideration is given in section 1. With reference 

to figure 1, we take the origin of the x-z co-ordinate axes to coincide with the corner 
of the edge of the fluid bed and divide the region into two parts, namely (i) the 
upstream region x 5 0 (labelled as I in figure 1)  and (ii) the downstream region 5 > 0 
(labelled as I1 in figure 1) .  It follows that (in the absence of surface tension) the pres- 
sure @ at the top surface equals the atmospheric pressure po  in both the upstream and 
the downstream regions, while the pressure p at the bottom surface equals po only in 
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the downstream region and is to be determined in the upstream region. Also, the 
bottom of the fluid bed is level in the upstream region, while in the downstream region 
the vertical location of the bottom surface a in (2 .7 )  is unknown and must be deter- 
mined in the course of solution. These preliminary observations may be summarized 
as? : 

I 9 = pot F to be determined, 
a = 0, 

Region I (z I 0) 

and 
@ = P Q ,  r ) = I ) Q ,  
a to be determined. 

Region11 (z > 0) 

With the help of (2 .10) ,  (3 .1 )  and (3 .2 ) ,  the steady state equations of motion (2 .8 )  
for the two regions I and I1 can be reduced to the forms: 

Region I :  

$ U = k , ,  p*k@ = -Px, *p*k@) = -p*q$+F, &p*g(+) = P -  --&P. 
X 2 x $  

(3 .3a ,  b, c,  d )  

Region I I :  

(3 .4a ,  13, c ,  d )  

In  the above we have integrated (2 .8a )  to obtain ( 3 . 3 ~ ~ )  and ( 3 . 4 a )  with k, and k, as 
constants of integration and have also introduced the notations 

In order to obtain a solution which holds throughout z( -a < x < a), the solutions 
in regions I and I1 must be matched a t  2 = 0. This matching is accomplished by using 
the standard jump conditions associated with the integral balance laws of the theory 
of a directed fluid sheet. Assuming that the fluid sheet leaves the edge of the bed at  
x = 0 smoothly, the appropriate two-dimensional form of the jump conditions for a 
fluid sheet of variable initial depth may be written as$ : 

where the notation [f] stands for 

u f n  = f+-f-, (3 .7)  

with f+ = lim,,,+f and f- = lirnz+,- f .  Supplementary to the jump conditions 

t Since the bottom surface in region I is level, a is constant and without loss in generality we 

These jump conditions are equivalent to those used by Green t Naghdi (1976a) in a different 

I3 F L M  103 

have set u = 0 in (3.1). 

context. 
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(3.6), we require both the director d and the vertical location of the bottom surface 
to be continuous across the edge of the fluid bed so that by (2.3) and (2.7) we have 

= 0, ~~~ = 0. (3.812, b )  

After matching the solutions in regions I and I1 with the use of the conditions (3.0) 
and ( 3 4 ,  we need to impose the boundary conditions associated with the flow far 
upstream and far downstream of the fluid bed’s edge (x = 0). In  this connexion, we 
suppose that far downstream the pressure distribution (in the three-dimensional 
theory) is uniform throughout the thickness of the fluid sheet and is equal to the 
atmospheric pressure p,. Consistent with this assumption and since surface tension 
has been neglected, i t  is clear that the fluid sheet falls freely under the action of 
gravity. Hence, far downstream of the bed, we assume that? 

4+H2, q5x+0, P+O as x + + a ,  (3.9a, b, c) 

where the constant vertical thickness H, of the fluid sheet far downstream of the bed 
is to be determined in the course of solution. Also, the assumption that far upstream 
the fluid flows as a uniform stream leads to the following boundary conditions: 

#-+HI, # z - + O ,  P=&p*gH2,, U + U ~  as x+--cx), (3.10a,b,c,d) 

where the constants H ,  and u, denote the depth and velocity far upstream. 

4. Solution 

(3.4 b )  follows the expression 
It is convenient to determine first the solution in region 11. From integration of 

P = p *  s2-- , ( 3 
where S, is a constant of integration. Then, after substituting (4.1) into (3 .44 ,  multi- 
plying by (since the vertical thickness q5 is never zero), integrating and multi- 
plying the resulting expression by 2#2, we obtain 

&k&5: = 2R& - 252q5 +- k i ,  (4.2) 

where R,  is another constant of integration. From (4.1), (4.2) and the conditions (3.9) 
the constants S, and R, are found to he 

(4.312, b )  

and then (4.2) yields the following differential equation for the vertical thickness of 
the fluid sheet: 

t The condition (3.9~) is motivated from ( 3 . 6 ~ ~ )  and (2.11) and the assumption that far down- 
stream the (three-dimensional) pressure p* = po.  
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# = Hz+Ae-Bx, B = -, 243 (4.5a, b) 
H2 

where A is a constant of integration to be determined. Next, substitution of ( 4 . 5 ~ )  
into ( 3 . 4 ~ )  followed by two successive integrations yields 

where C and D are constants of integration. The solution in the downstream region 
given by (3.4a), (4.1), ( 4 . 5 ~ )  and (4.6) is completely determined once the constants 
H,, k,, A ,  C and D are evaluated. 

We now turn our attention to the solution in region I. Integration of (3.3 b) gives 

where S, is a constant of integration. After eliminating P and P from (3.3d) with the 
help of (4.7) and (3.3c), multiplying by #x/#, integrating and multiplying the resulting 
expression by 2#,, we obtain 

&k;#t = - ~9~ + 2R,#2 - 2S1# + k2,, (4.8) 

where R, is another constant of integration. The constant,s k,, S, and R,, determined 
from (3.3a), (4.7), (4.8) and the boundary conditions (3.10), are given by 

and then the differential equation (4.8) can be reduced to 

The system of equations (3.3a), (4.7), ( 3 . 3 ~ )  and (4.10) characterize the motion of fluid 
in the upstream region. 

Before recording the solution of (4. lo), it  is convenient to exploit the implications 
of the matching conditions (3.6) and (3.8). Thus, with the help of (2.10a, b),  (3.1), 
(3.3a), (3.4a), (4.1) and (4.7), the conditions (3.6) and (3.8) are seen to be equivalent 
to 

# + = # - = H ,  # $ = # ; = K ,  a + = a - = 0 ,  a$=a;=O (4 .1la,b,c ,d)  

and 

k,  = k, = k ,  S,  = S1, (4.12a, b)  

where k represents the constant rate of flow, H and K are the height and slope of the 
top surface of the fluid sheet at the edge x = 0 of the bed and where we have made use 

13-2 
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of the notations in (3.7). The constant H, in ( 3 . 9 ~ )  can now be determined by using 
(4.3a), (4.9b) and (4.12a, b )  and is given by 

H 2 = k 2  [ +gHf+- FJ-l . (4.13) 

In view of (4.120, b) ,  from (4.3a, b )  follows the relation 

R, = S2,/2k2. (4.14) 

Now after evaluating (4.2) and (4.10) at z = 0, with theuse of (4.11)-(4.13) along with 
elimination of the constant K in (4.11 b) ,  we obtain the cubic equation 

gHs+ (4S2,lkz- 2R1)H2 - 6S,H + 3k2 = 0 (4.15) 

for the determination of the constant vertical height H .  Also, the constants A ,  C, D in 
(4.6) can be determined by using (2.11), (4.5a), (4.6) and the conditions (4.1la, b , c ) .  
The results of this calculation are: 

K A g  A K  A 2 g  
A = H-H C = D = &H+----- ( 4 . 1 6 ~ , b , ~ )  

29 2H Bk2’ B 2 H  B22k2’ 

Before proceeding further, we observe that physical considerations require P to be 
non-negative. To see this, we first note that the pressure p* in the three-dimensional 
theory of an inviscid fluid sheet is not less than the atmospheric pressure po,  i.e. 
p* 2 po ,  and recall the expression for p in terms ofp* given by (2.11). It then follows 
from ( 3 . 5 ~ )  that 

P =p-p,q!l 2 0. (4.17) 

Moreover, with the help of (4.1) and (4.3a), this inequality implies that 

q!l 1- H,. (4.18) 

In  particular, when 6 = H (at x = 0 ) ,  we have H 2 H ,  and hence A in ( 4 . 1 6 ~ )  is 
non-negative. 

At this point, it is convenient to introduce the upstream Froude number F by 

and define 

(4.19) 

q ! l - x - H - H  
HI’ , - H 1  

H = -  H - 2 .  (4.20a, b, c, d )  $=%, x = -  
Hl ’ 

In terms of the above dimensionless quantities and the F’roude number F, the differ- 
ential equation (4.10) and the boundary condition (3.10a) may be written as 

Observing that the left-hand side of (4.21 a) and hence also its right-hand side is always 
non-negative, we conclude that 

{F2 - $(Z)}{$(2) - 11, 2 0. (4.22) 
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Furthermore, if $(5) =+ 1 a t  a point 5, then it follows from (4.22) that 

FZ-$(5) 2 0 (&z) + 1).  (4.23) 

Using (4.23) and the continuity of the function 7 ,it can be shown that when F < 1 the 
only solution of (4 .21~)  consistent with the boundary condition (4.21b) is the uniform 
solution $(Z) = 1 for all --co c 5 2 0. On the other hand, if F 2 1, then (4.23~)  must 
hold. These results may be conveniently summarized as 

$(3) = 1 for F < 1, (4.24~) 

$(z) 5 F a  for F 2 1. (4.243) 

The conclusion (4.24~)  is, of course, a known result in cnoidal wave theory. 
We are now in a position to establish the following result (by contradiction): For 

the boundary-value problem under consideration, the upstream Froude number F 
cannot be subcritical (F < l),  and we then conclude that the upstream flow must be 
either critical (F = 1) or supercritical (F > 1) .  By calculating the slopes q5z in both 
regionsIandIIforF < 1 withthehelpof(4.24a), (4.5a,b), (4.16a), (4.20)andmaking 
use of the condition (4.11 b ) ,  we can deduce the result that 

8, = B = 1 for F c 1. (4.25) 

On the other hand, substitution of (4.19) and (4.20) into (4.13) yields 

(4.26) 

which is a contradiction. We have thus proved that for the boundary-value problem 
under consideration a solution exists only if 

F 2  1. (4.27) 

Consider next the left-hand side of (4.15) and, with the help of (4.9b, c ) ,  (4.19) and 
(4.20), rewrite this as a polynomial in the form 

&(B) = F2Ba+(3P4+2Fa+ 1)B2-3(F2+2F4)8+3F4. (4.28) 

Clearly, by (4.15) the height B is determined from the equation 

&(B) = 0. (4.29) 

By (4.26) and (4.28), as well as the condition (4.27), it  can be verified that 

&(-a) < 0, & ( O )  > 0, &(a,) < 0, &(I)  > 0, (4.30u, b, c,  d )  

which show that the three roots fl of the polynomial expression (4.29) are real and 
that there is only one root B€(B2,  1).  Since 2 H ,  by (4.18), it  follows from (4.29) 
and (4.30) that 

(4.31 a, b )  8 , s  a c 1, H ,  5 H < H I .  
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FIQ~RE 2. A plot of the solution exhibiting profiles of the fluid sheet for an upstream height 
H ,  = 1 meter and for two values of the Froude number F. Also indicated are the values in SI 
units of the height H at the edge of the fluid bed and the vertical thickness H ,  far downstream 
calculated from (4.36) and (4.26), respectively. -, F = l ;  ---, F = 2 .  

We now integrate (4.10) to obtain the height of the free surface in the upstream region. 
Thus 

4 = H,- '@ for F = 1, 
3(x + a)* 

(4.32 a) 

$ = H, - H, (F2 - 1) cosech* for P > 1, (4.323) 

where the constants a and b are determined from the condition (4.11 a) and are given 
bv 

This completes our development of the overfall problem. For convenience, we sum- 
marize the main results of the solution before a discussion of some of its features. In  
region I (z 5 0), the solution is 

$ ~ = k ,  P = p *  [ +gH;++k (&-;)I, $givenby(4.32), (4.34ab) 

while in region I1 (x > 0) the solution is 

4~ = k, p = p*+k2 --- , $and$givenby(4.5)and(4.6) (4.35a,b) 

6 

(A2 f )  
and c 1) is determined by (4.29) or equivalently by 

P*R3 + (3P4 + 2F2 + 1)B2 - 3 ( P  + W4)B + 3F4 = 0. (4.36) 
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FIQURE 3. A comparison between the solutiom and experimental results for the critical flow 
(3' = 1 )  and upstream height HI = 1 m: - , present solution; - - - , Chow & Han (1979), 
40 x 40 grid; -.-.-, Southwell & Vaisey (1940), relaxation; 0, experimental reaults of Rouse 
(1936). ( m e  results of other authors presented here are taken from figure 9 of Chow & Han 
1979). 

In  the solutions for $ and $ specified in (4.34)-(4.35), the constants a and b are given 
by (4.33), H ,  is calculated from (4.13), B is given by (4.5b) and the constants A, C, D 
are given by (4.16) and K in (4.11 b) may be determined by differentiating the appro- 
priate expression in (4.32) and evaluating $= a t  2 = 0. 

5. Discussion 
It is of interest to solve (4.36) for F 2 i n  terms of a. After rearranging (4.36), we have 

3(1-B)aF4-B(1-B) ( B + 3 ) P 2 + a 2  = 0. (5.1) 

Although in general there are two roots of (5.1), only one of the roots corresponds to 
the overfall problem. The relevant root of (5.1) may be identified by recalling that 
whenF2 = 1, theonlysolutionof (4.36) satisfyingtherestriction ( 4 . 3 1 ~ )  i s a  = 0.71688 
(rounded off to 0.717). Since the solution of (5.1) must also predict that F2 = 1 when 
B = 0.717,wemaywrite 

B+ 3 - [(B+ 3)'- 1219 
6(1 -B) 

Since a 2 a2 by ( 4 . 3 1 ~ )  and n2 has a minimum value Q (corresponding to F = 1 in 
(4.21), it follows that B 2 Q always and hence F 2  in (5.2) is always real. The simple 
formula (5.2) should be of practical interest in determining the flow rate from measure- 
ments of only the upstream height HI and the height H at the edge of the fluid bed. 

By way of illustration, the solution obtained in $ 4  is depicted in figure 2 for two 
values of the Froude number F = 1 and F = 2 and for an upstream height H I  = 1 m 
in SI  units. Figure 3 compares the present solution for the critical flow (F = 1)  with 
the corresponding numerical solutions of Chow & Hen (1979) and Southwell & Vaisey 
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T’ z =  1 

--oo I -1.0 0 

- l I j  -2.0 

z 

FIGURE 4. A comparison of the present solution (-) with the numerical solution of Chow & 
Han (1979) (- - -) for Froude number F = 3 and upstream height H ,  = 1 m. 

(1946), as well as the experimental results of Rouse (1936). Inspection of figure 3 
indicates that in the upstream region (region I in figure l) ,  the present solution is in 
good agreement with the experimental results. In particular, the present solution 
predicts a value H = 0.717m which is quite close to the experimental mean value? 
H = 0.716 m reported by Rouse (1936, p. 260). Also in the full range of Froude num- 
bers, the predictions of the present solution for the height H at the edge of the fluid 
bed are almost identical (to within 4 yo) to those obtained numerically from the three- 
dimensional equations by Markland and plotted in figure 8 of the Discussion of his 
paper (Markland 1965, p. 292). In addition, a comparison of the present solution with 
the numerical solution of Chow & Hen (1979) for F = 3 is shown in figure 4. Inspection 
of figures 3 and 4 suggests that the differences between the present solution and that of 
Chow & Han (1979) decrease as the Froude number increases. 

Returning to the solution presented in Q 4 we note that although the jump conditions 
require the continuity of various quantities a t  the edge of the bed x = 0 (see equations 
(4.11) and (4.12)), certain discontinuities remain. In  particular, it can be shown that 
the bottom pressure difference P is greater than zero a t  x = 0- and equal to zero 
at x = O+. It is also of interest to note that figure lO(c) of Chow & Han suggests 
that for F = 420 and P = 4.45 the horizontal velocity is fairly independent of 
the vertical coordinate. This result is consistent with the kinematical assumption 
(2.9), which requires the horizontal velocity to be independent of the vertical co- 
ordinate. As a further comparison, we mention that the formula for 8, in (4.26) is 
identical with one that can be derived from the exact three-dimensional equations of 
an incompressible, inviscid fluid under steady state conditions, as well as the assump- 
tions of uniform flow upstream and uniform atmospheric pressure and constant 
horizontal velocity far downstream (see (6.29), p. 193 in Henderson 1966). Finally we 
note that the expression (4.6) may easily be used to show that the limit x+ +oo the 
fluid sheet becomes vertical as is to be expected. Of course, this limit may never be 

t Rouse (1936, p. 260) reports that for the critical flow (F = 1) in the free overfall, he had 
found a ‘mean value of 0.716, with an average arithmetic departure from 0-715 of 0.6%’. For 
convenience we have converted the nondimensional value of H presented by Rouse (1936) to a 
dimensional value of by multiplying by H ,  = 1 m. 
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attained experimentally since the fluid sheet must necessarily contact some solid 
boundary at some finite value of x. 

The results reported here were obtained in the course of research supported by the 
U.S. Office of Naval Research under Contract N00014-764-0474, Proejct NRO62-534 
with the University of California, Berkeley. 
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